Extreme and periodic $L_2$ discrepancy of plane point sets

نویسندگان

چکیده

We study the extreme and periodic $L_2$ discrepancy of plane point sets. The is based on arbitrary rectangles as test sets whereas periodic uses “periodic intervals”, which can be seen intervals t

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Half-plane and Strip Discrepancy of Planar Point Sets

Proof: We discuss the structure for nding the maximum value of any of the functions (` + r ()), r 2 S, at a query value of. Finding the minimum value, and nding the maximum and minimum for the functions (` + r ()), can be done in a similar way. So we are interested in the function () := max r2S (` + r ()). The function () is called the upper envelope of the functions (` + r ()). It is known tha...

متن کامل

Star Extreme Discrepancy of Generalized Two-dimensional Hammersley Point Sets

We generalize to arbitrary bases recent results on the star extreme discrepancy of digitally shifted two-dimensional Hammersley point sets in base 2 by Kritzer, Larcher and Pillichshammer. The key idea is to link our fundamental formula for the discrepancy function of generalized van der Corput sequences to the corresponding quantity for generalized two-dimensional Hammersley point sets. In tha...

متن کامل

L2 discrepancy of generalized Zaremba point sets

We give an exact formula for the L2 discrepancy of a class of generalized two-dimensional Hammersley point sets in base b, namely generalized Zaremba point sets. These point sets are digitally shifted Hammersley point sets with an arbitrary number of different digital shifts in base b. The Zaremba point set introduced by White in 1975 is the special case where the b shifts are taken repeatedly ...

متن کامل

Discrepancy bounds for low-dimensional point sets

The class of (t,m, s)-nets and (t, s)-sequences, introduced in their most general form by Niederreiter, are important examples of point sets and sequences that are commonly used in quasi-Monte Carlo algorithms for integration and approximation. Low-dimensional versions of (t,m, s)-nets and (t, s)-sequences, such as Hammersley point sets and van der Corput sequences, form important sub-classes, ...

متن کامل

Explicit constructions of point sets and sequences with low discrepancy

In this talk we discuss explicit constructions of sequences with optimal $L_2$ discrepancy and explicit constructions of point sets with optimal $L_q$ discrepancy for $1 < q < \infty$. In 1954 Roth proved a lower bound for the $L_2$ discrepancy of finite point sets in the unit cube of arbitrary dimension. Later various authors extended Roth's result to lower bounds also for the $L_q$ discrepanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2021

ISSN: ['0065-1036', '1730-6264']

DOI: https://doi.org/10.4064/aa200520-22-12